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Abstmel. The spreading characteristics of a fluid wedge on an attractive substrate are 
studied with the Monte Carla simulations in a horizontal solid-an-solid model and com- 
pared with the Langevin theory. In the partially wet case, relaxation to a stable wetting 
angle i s  observed, whereas in the completely wet system a precursor film is found to behave 
linearly in time and the layers next to the precursoras (I log I)'/', in agreement with theory. 
The layers above the precursor film of molecular thickness seem to show diffusive fluid 
profiles as found previously in continuum theory. 

Recently there has been renewed interest and progress in the study of wetting and 
spreading. This is a subject of great technical importance for lubrication, painting and 
adhesion (Ball 1989, Cazabat 1987 and de Gennes 1985). Hardy (1919) first demon- 
strated the remarkable property that a small droplet of an involatile, immiscible 
substance floating on water spreads out, driving before it specks of dust which happen 
to be in the way. A simple but not unreasonable continuity argument shows that the 
final film, if it is homogeneous, is surprisingly only of molecular thickness. If there is 
free space left on  the water surface, the film will ultimately break up at its perimeter, 
although this is likely to be a very slow process. Hardy showed that the surface tension 
of that part of the water surface which is covered is decreased, as the molecular picture 
above would suggest. But this picture is only inferred from the macroscopic results. 
Nevertheless, the behaviour of the spreading drop at its perimeter is quite unknown. 

Over the past few years, ellipsometric studies have changed this situation. The 
earliest results of these experiments (Leger er al 1988) were partly explained by a 
continuum theory (Joanny and de Gennes 1986). The resolution of the extremum of 
the droplet has revealed a rather flat precursor film of molecular thickness ( - 5  A), 
with structure independent of the spreading coefficient, preceding the rest of the drop 
ultimately up  to a distance of order 10'8, (Heslot er al 1989a). The experiments also 
give evidence that the final state of the spread drop is not a 'pancake' but more likely 
a surface gas, thus pointing out the ultimate domination of molecular diffusion over 
the liquid cohesion. In some cases, up to four such molecular films were found to be 
stacked on top of each other (Heslot er al 1989a, b). Clearly hydrodynamics (Joanny 
and de Gennes 1986) is not entirely appropriate here since viscosity is not a well 
defined concept on this length scale. Alternative theories, based on Langevin theory, 
have on the other hand had some success (Abraham et a/ 1990a, b). 
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The horizontal solid-on-solid (HSOS) model has been demonstrated to give a good 
account of the equilibrium wetting transition and interface profile near a substrate 
wall (Abraham and Huse 1988, Abraham and KO 1989). In this model, instead of 
discussing a phase-separating surface which is a histogram above the substrate plane, 
as in the usual SOS model, we investigate a surface which is a histogram with respect 
to a plane normal to the substrate. In this letter we will consider a wedge of fluid 
spreading in the x direction (without overhangs with respect to this direction) across 
a flat substrate with normal z. The underlying space is discretized, since only then can 
an SOS model make sense physically (Kac and Logan 1979). The surface of the spreading 
droplet is described by a dynamic integer-valued variable h, ,k( f ) ,  where j is a non- 
negative integer for the z coordinate and k is the remaining discrete y coordinate in 
the three-dimensional case. For the Langevin theory, which we will summarize in the 
d = 2 case, h,(f) is continuous. Then we can write the equation of motion as 

Jh. a F  
--?=-A-+ Tj(f) 
a i  J hj 

where the boundary conditions are h,(O) = 0, j = 0, . . . , L -  1 ,  h,- , ( t )  = 0, Vf 3 0, and 
T, ( f )  is white noise: 

(T , (o )=o  ( T , ( t ) v k ( f ' ) )  = 2kTA8,,8( f - t'). (2) 
In equation (1). A is an arbitrary time scale and F ( { h } )  is a free energy functional 
taken to be 

L- I 

F ( { h ) )  = T d1 +(h j  - hj_,)'- Fah, 
j =  I 

Such a model cannot be defined consistently for the usual SOS model since hj( t )  2 0 
which is incompatible with the white noise term. In the simplest case; T is the surface 
tension and po is an interaction favouring covering the substrate. The Gaussian 
approximation to (3) is exactly solvable (Abraham et al 1990a, b), but it does not give 
complete wetting at equilibrium unlike (3) itself. In any case, the quadratic truncation 
would be inappropriate. In these two papers a local equilibrium approximate treatment 
was given which produced a precursor film if po> T. If we replace the free energy 
functional in (3) by 

L- I 

F ( l h ) )  = X lhj -hj-,I - d o  (4) 
.I = I 

then an exact solution is still impossible it seems, but the existence of the precursor 
film is rather obvious since ' 

Averaging over noise, we have 

forall t a 0 , f r o m  whichtheinequality A(po+~)13(ho)aA(~O-~)f,follow~byelemen- 
tary calculus. Thus a precursor film exists whenever pLo> T. Since we anticipate h,> h , ,  
ultimately we expect 
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only for the first layer. In Abraham er a/ (1990b) it is also suggested that in fact for 
j < < O ( r 1 ' 2 ) ,  we have ( h , ( i ) ) - ( r l o g t ) 1 ' 2 .  

In this work we examine, via Monte Carlo simulations, the time evolution of the 
related problem using the following HSOS Hamiltonian: 

TI." c-".*-- .̂.-I :..,I-.. 1. ---. ..I.̂ -1 _̂ .... ^-I P^. .L^ 2 - m  I..^ 
lllr ,,,DL LGlll l  ' lIIU l l ,UC* rr a,= ,U us ","ypG" 1°C ,,IC U = L  >ysrc 111. we LaLC L l l C  h,,k :o 
be integers and impose the boundary conditions h, , (O)  = 0 for all j ,  k and h L - l , k ( i )  = 0 
for all f 2 0 and all k. Thus for the d = 3 case we have assumed the wedge geometry 
on top of a planar xy-substrate with additional periodic boundary conditions in the 
y-direction and fixed on top of the wedge at z = ( L - I ) .  The d = 2  case is otherwise 
the same but without the y-direction and its boundary condition. It should be noted 
that this HSOS model can describe only the case of an involatile fluid. This model is 
also incapable of producing the surface gas, as found experimentally for final stages 
of spreading (Heslot er a/ 1989a). In order to include volatility, i.e. evaporation and 
redeposition, and a possibility for surface gas, Ising-type models should be used. The 
case of a surface gas, however, can also be studied with a vertical SOS model. In the 
Hamiltonian ( 8 )  no dynamics has yet been included. In  Monte Carlo simulations the 

deterministic but stochastic in nature. It describes a random migration of the state of 
the system through the configurational phase space towards equilibrium as a result of 
the system being a contact with a heat bath and confirming the Hamiltonian via the 
detailed balance relation. 

In these computer simulations the time proceeds in discrete steps and is measured 
by Monte Carlo stepsjsite (MCS/S). Within each time step, on average, every h j , k ( f )  is 
randomly updated with the transition probability 

dj;iiaiiiics is based oii :k Maikoviaii mastei eqiiaiioii. ThiiS ike dyiiaiiiics is iioi 

P(hj,,+hi,k)=min 1,exp - { ( - 3 1  (9) 

where A H  is the energy difference between the final (h; ,L)  and initial ( I I ) , ~ )  states. 

included. In fact we can then interpret the wedge as a limitless reservoir of particles 
for the spreading front. We believe that the simple Hamiltonian and dynamics models 
can capture some of the saliant features of fluid spreading specifically for precursor 
films at about molecular thickness, for which length scales hydrodynamics is inap- 
propriate. 

In this letter we will mainly consider the result for d = 2, although we will briefly 
mention the main results for the d = 3 case. In the computer simulations the dynamics 
of h,,k were followed up to the time when the precursor film had spread to about IO 000 
lattice units. The dynamic averages were taken over at least 400 runs, so that a 
'conservative' estimate for the error bars, based on the central limit theorem, is less 
than 5%. In our studies the system sizes were varied as L = 40, 60, 80, 120, 240 in two 
dimensions whereas smaller L =  M were used in three dimensions. No significant 
finite-size effects were detected; in fact the results for hj,k were the same within the 
error bars for all studied L. In figure 1 we show a time sequence of the fluid profile 
for the complete wetting case (po> 7). A very rapid precursor film layer is seen to 
precede all the other layers. Also it seems that for about ten layers from the second 
layer onwards the fluid's thickness (e) profile behaves diffusively as a function of 

T,......,. .I.̂  -I :.." :" -I.."..-:I.o,I I.., " ";^"Il. ":._ ^^ ^^ ....";",- ,..."-~-.,"&:.... :" 
r l G I I C C  L U F  uy.r'arrlrL.s 1D " r J C L I V r "  V J  'a ""1~1C-J,Lr: C l F l l L  JV 11" ya,r , rrr ;  L"II.=cI"a.cI"II 1J 
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00 

Figure I .  Snapshots of completely wetting fluid profiles at 100, 800, 2500, 7000 and 
16000 MCSIS. Results are averages over 500 independent runs with +,=0.15, r=0.10 and 
kT = 0.04. 

spreading distance (x), e---'.  This was obtained previously from the continuum 
theory (Joanny and de Gennes 1986). 

In figure 2 we show the results for the dynamics of first three layers in a partially 
wet system. For po = 0.5 x 7 and po = 0.9 x T these layers are found to relax to constant 
values and thus to finite wetting angles, clearly demonstrating that the system is partially 
wet. Although at early times the first layer precedes the second, and so on, giving rise 
to different spreading exponents we do not see a clear formation of a precursor film. 
Before equilibration the layers spread with an effective exponent being in the neighbour- 
hood of the diffusive exponent, f .  

The spreading in the case of complete wetting for various values of po is shown 
in figure 3. The first layer is found to form a clear precursor film, preceding rapidly 
ahead of the two next layers on top of the first one. The characteristic time behaviour 
for h,,  h ,  and h,  persist after the initial transient period of about 100 MCS/S, within 
which the formation of the precursor film occurs. In figure 4 we demonstrate the success 
of the curve fitting over more than two orders of magnitude in time to find the dominant 
time behaviour for the first three layers, For the precursor film we have used ho( t) = 
A + B x t" as the fitting function either by forcing n = 1 and using least-squares analysis 
or letting n find its best value by using the Levenberg-Marquardt method (Press et al 

io3 106 io5 1 00 
102 

t I MCS/spln I 
6 

Figure 2. Dynamics of first three layers on an attractive substrate for two partially wet 
cases; = 0.09 (.) and +o = 0.05 (x).  In both cases 7 = 0.10 and kT = 0.04, with averages 
taken over 500 independent runs. 
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Figure 3. Dynamics of first layers for three completely wet cases; po=0.20 ($1. po=0.15 
(.) and po=O.ll (x). Other parameters are the same as in figure 2. 
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Figure 4. Curve iiiiing of the i-hancii-risiic spieading dynamics iii :be iompkie 
wetting case (po=0.15 and other parameters are the same as in figure 2). Best fit 
curves are h o ( r ) = - I . 5 6 + 0 . 3 5 7 x  1, h , ( r ) = - 5 . 5 1 + 0 . 7 2 0 x ( r l o g  1)''' and h,(r)= 
-8.43+0.609x(I log I)"'. 

1986). In the latter case we find n = 1.002 with only a very slightly better sum of square 
residuals. For h , ( t )  and hl(O we used either h , ( r ) = A + B x r "  or h , ( f ) = A + B x  
( f  log f)"* as fitting functions in the Levenberg-Marquardt method. A very good fit 
can be obtained by choosing n = f i n  the former fitting function but a ten-fold improve- 
ment in the sum of square residuals can be achieved by letting n find their best values, 
n =OS56 and n =OS67 for h ,  and h, ,  respectively. Using the latter fitting function we 
obtain the same sum of square residuals as for the unforced fitting function. These 
results are in excellent agreement with the analytical considerations by Abraham er a1 



L314 Letter to the Editor 

(1990a. b) and the discussion above. It is worth mentioning that the sums of square 
residuals of these curve fittings can also be used as more accurate estimates for the 
error bars in h , ( f ) .  Thus we find that the error bars should be of the order of 0.8% 
instead of the earlier estimate of 5%. 

We have carried out the same simulations and analysis for the d = 3 case but by 
studying ( h o ( f ) ) s ,  ( h , ( f ) ) ?  and ( h 2 ( f ) ) s  instead. Here the subscript s stands for the 
spatial average over the y direction. As in two dimensions we find these averaged 

wetting the average precursor film is once again found to be linear in time, i.e. (ho( 1)). - f 
and the two layers on top of it also behave as (h,(f))s - ( f  log f ) ” 2 .  A detailed analysis 
of the d = 3 case will be presented elsewhere. 

These simulations of the dynamic HSOS model show (a) a precursor film spreading 
as f, (b) some higher layers moving as ( f  log f ) ” 2  and (c) above that a profile as e - x - ~ .  
S x h  resc!ts h w e  been predicted by the Lengevin thecry (,A.br~her. P! a! !?%a, b) 
(for (a) and (b)), and by the continuum theory (Joanny and de Gennes 1986) (for (c)) 
and experiments ((a), (b) and (c)), although in the latter two cases the geometry is 
spreading from a small drop rather than a wedge. It is very likely that this geometry 
produces significantly different results because in the drop case there is more likelihood 
of the spreading disc breaking u p  at its perimeter. 

spreading interaction is assumed only to act on the first layer; this is easily remediable. 
Secondly, the substrate is taken to be smooth. A most serious approximation is the 
apparent lack of matter conservation. We assume that the wedge acts as a particle 
source for the precursor film and that particles move from there to the film front 
essentially instantaneously on the time scale of the simulation which is the ultimate 
one. If the precursor film is wide enough it is likely that evaporation from its front 
will become as fast as the spreading and the precursor will stop growing, much as 
seen with squalane (Heslot e ta /  1989a). Also it is clear that much remains to be done 
in this field. 

In summary, we have shown that our dynamic HSOS model yields results in excellent 
agreement with the analytic Langevin theory. It even seems that this model shows 
similar fluid profiles as obtained from hydrodynamics, which on the other hand is not 
entirely appropriate for treating systems at molecular dimensions. In the future it 
should be very interesting to study volatile systems and systems with longer range 
substrate potentials. 

The authors thank B Chopard, P Collet, J De Coninck, E Domany, F Dunlop, H 
Herrmann, J F Joanny and P J Upton for interesting discussions on related problems 
JH and KK would like to acknowledge the financial support from the Academy of 
Finland, KK would also like to thank SERC and Condensed Matter Theory Group 
(Oxford University) for financial support and hospitality. 
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