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LETTER TO THE EDITOR

Computer simulation studies of fluid spreading
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¥ Tampere University of Technology, PO Box 527, SF-33101 Tampere, Finland

Received 1 January 1991

Abstract. The spreading characteristics of a fluid wedge on an attractive substrate are
studied with the Monte Carlo simulations in a horizontal solid-on-solid model and com-
pared with the Langevin theory. In the partially wet case, relaxation to a stable wetting
angle is observed, whereas in the completely wet system a precursor film is found to behave
linearly in time and the layers next to the precursor as (¢ log £)'/?, in agreement with theory.
The layers above the precursor film of molecular thickness seem to show diffusive fluid
profiles as found previously in continuum theory.

Recently there has been renewed interest and progress in the study of wetting and
spreading. This is a subject of great technical importance for lubrication, painting and
adhesion (Ball 1989, Cazabat 1987 and de Gennes 1985). Hardy {1919) first demon-
strated the remarkable property that a small droplet of an involatile, immiscible
substance floating on water spreads out, driving before it specks of dust which happen
1o be in the way. A simple but not unreasonable continuity argument shows that the
final film, if it is homogeneous, is surprisingly only of molecular thickness. If there is
free space left on the water surface, the film will ultimately break up at its perimeter,
although this is likely to be a very slow process. Hardy showed that the surface tension
of that part of the water surface which is covered is decreased, as the molecular picture
above would suggest. But this picture is only inferred from the macroscopic results.
Nevertheless, the behaviour of the spreading drop at its perimeter is quite unknown,

Over the past few vears, ellipsometric studies have changed this situation. The
earliest results of these experiments (Leger et al 1988) were partly explained by a
continuum theory (Joanny and de Gennes 1986). The resolution of the extremum of
the droplet has revealed a rather flat precursor film of molecular thickness (~35 A),
with structure independent of the spreading coeflicient, preceding the rest of the drop
ultimately up to a distance of order 10’ A (Heslot et al 1989a). The experiments also
give evidence that the final state of the spread drop is not a *pancake’ but more likely
a surface gas, thus pointing out the ultimate domination of molecular diffusion over
the liquid cohesion. In some cases, up to four such molecular films were found to be
stacked on top of each other (Heslot ef al 1989a, b). Clearly hydrodynamics (Joanny
and de Gennes 1986) is not entirely appropriate here since viscosity is not a well
defined concept on this length scale. Alternative theories, based on Langevin theory,
have on the other hand had some success (Abraham et al 1990a, b).
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The horizontal solid-on-solid (Hsos) model has been demonstrated to give a good
account of the equilibrium wetting transition and interface profile near a substrate
wall (Abraham and Huse 1988, Abraham and Ko 1989). In this model, instead of
discussing a phase-separating surface which is a histogram above the substrate plane,
as in the usual sos model, we investigate a surface which is a histogram with respect
to a plane normal to the substrate. In this letter we will consider a wedge of fluid
spreading in the x direction (without overhangs with respect to this direction) across
a flat substrate with normal z. The underlying space is discretized, since only then can
an sos model make sense physically (Kac and Logan 1979). The surface of the spreading
droplet is described by a dynamic integer-valued variable h , (1), where j is a non-
negative integer for the z coordinate and k is the remaining discrete y coordinate in
the three-dimensional case. For the Langevin theory, which we will summarize in the
d =2 case, h(t) is continuous. Then we can write the equation of motion as

gh;  oF
ar Aahj+njm 1
where the boundary conditions are h;(0)=0, j=0,...,L-1, h,_,(1)=0, ¥1=0, and
7;(1) is white noise:

(m(1)}=0 (i) (¢'D) =2k T8, 8(t — 1), (2)

In equation (1), A is an arbitrary time scale and F({h}) is a free energy functional
taken to be

=7 T VT4~ 7~ seoho. )

Such a model cannot be defined consistently for the usual sos model since k() =0
which is incompatible with the white noise term. In the simplest case; 7 is the surface
tension and p, is an interaction favouring covering the substrate. The Gaussian
approximation to (3) is exactly solvable (Abraham et al 1990a, b), but it does not give
complete wetting at equilibrium unlike (3) itself. In any case, the quadratic truncation
would be inappropriate. In these two papers a local equilibrium approximate treatment
was given which produced a precursor film if p,> 7. If we replace the free energy
functional in (3) by

F((h =1 %, 1hy—hy | ohs @

then an exact solution is still impossible it seems, but the existence of the precursor
film is rather obvious since

-1

ah
-é—t—q=—*rsgn(h0—h.)+un+ﬂo(f)- (5)
Averaging over noise, we have
KA
A(uu+'r)?_(a“tg‘)-?k(uo—7) (6)

for all £ =0, from which the inequality A (uo+ )t = {hp) = A (o — 714, follows by elemen-
tary calculus. Thus a precursor film exists whenever p,> 7. Since we anticipate ho> &,
ultimately we expect

I

ho(t)~1\(ﬂo—'r)+_|' no(s) ds ),

0
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only for the first layer. In Abraham et af {1990b) it is also suggested that in fact for
J=O(1'%), we have {h(1))~ (¢ log )"/,

In this work we examine, via Monte Carlo simulations, the time evolution of the
related problem using the following Hsos Hamiltonian:

L-1 M

H=r Z Z ; hys— 1“'7' Y lh_[+lk j,kl“l-f-ok,‘z.:l hﬂ,k- (8)

=0 k=t =0 k=1
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The first term and index & are to be UIUPPCU forthe d =2 Sysicmni. We take the h,k o
be integers and impose the boundary conditions f;;(0} =0 forali j, k and A, _, (1) =0
for all t=0 and all k. Thus for the d =3 case we have assumed the wedge geometry
on top of a planar xy-substrate with additional periodic boundary conditions in the
y-direction and fixed on top of the wedge at z={(L—1). The d =2 case is otherwise
the same but without the y-direction and its boundary condition. It should be noted
that this Hsos model can describe only the case of an involatile fluid. This model is
also incapable of producing the surface gas, as found experimentally for final stages
of spreading (Heslot et al 1989a). In order to include volatility, i.e. evaporation and
redeposition, and a possibility for surface gas, Ising-type models should be used. The
case of a surface gas, however, can also be studied with a vertical sos model, In the
Hamiltonian (8) no dynamics has yet been included. In Monte Carlo simulations the
dynamics is based on the Markovian master equation. Thus the dynamics is ot
deterministic but stochastic in nature, It describes a random migration of the state of
the system through the configurational phase space towards equilibrium as a result of
the system being a contact with a heat bath and confirming the Hamiltonian via the
detailed balance relation.

In these computer simulations the time proceeds in discrete steps and is measured
by Monte Carlo steps/site (Mcs/s). Within each time step, on average, every h,,(¢) is
randomly updated with the transition probability

P(h,. - h}‘k)=min{l,exp(_:TH)} ©9)

where AH is the energy difference between the final (h;,) and initial (h;,) states.

Avrsnrnan e 1o Annoarratinm 1o
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included. In fact we can then interpret the wedge as a limitless reservoir of particles
for the spreading front. We believe that the simple Hamiltonian and dynamics models
can capture some of the saliant features of fluid spreading specifically for precursor
films at about molecular thickness, for which length scales hydrodynamics is inap-
propriate.

In this letter we will mainly consider the result for 4 =2, although we will briefly
mention the main results for the d =3 case. In the computer simulations the dynamics
of h;x were followed up to the time when the precursor film had spread to about 10 000
lattice uniis. The dynamic averages were taken over at least 400 runs, so that a
‘conservative® estimate for the error bars, based on the central limit theorem, is less
than 5%. In our studies the system sizes were varied as L =40, 60, 80, 120, 240 in two
dimensions whereas smaller L=M were used in three dimensions. No significant
finite-size effects were detected; in fact the results for h;, were the same within the
error bars for all studied L. In figure 1 we show a time sequence of the fluid profile
for the complete wetting case (uo> 7). A very rapid precursor film layer is seen to
precede all the other layers. Also it seems that for about ten layers from the second
layer onwards the fluid’s thickness (e) profile behaves diffusively as a function of
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Figure 1. Smapshots of completely wetting fluid profiles at 100, 800, 2500, 70600 and
16 000 mMcs/s. Results are averages over 500 independent runs with g, =0.15, r=0.10 and
kT =0.04,

spreading distance (x), e~x"°. This was obtained previously from the continusm
theory (Joanny and de Gennes 1986)

In figure 2 we show the results for the dynamics of first three layers in a partially
wet system. For p,=0.5x 7 and po=0.9 % 7 these layers are found to relax to constant
values and thus to finite wetting angles, clearly demonstrating that the system is partially
wet. Although at early times the first layer precedes the second, and so on, giving rise
to different spreading exponents we do not see a clear formation of a precursor film.
Before equilibration the layers spread with an effective exponent being in the neighbour-
hood of the diffusive exponent, 1.

The spreading in the case of complete wetting for various values of u, is shown
in figure 3. The first layer is found to form a clear precursor film, preceding rapidly
ahead of the two next layers on top of the first one. The characteristic time behaviour
for hy, h, and h, persist after the initial transient period of about 100 mcs/s, within
which the formation of the precursor film occurs. In figure 4 we demonstrate the success
of the curve fitting over more than two orders of magnitude in time to find the dominant
time behaviour for the first three layers, For the precursor film we have used hy(t) =
A+ B xt" as the fitting function either by forcing n = 1 and using least-squares analysis
or letting » find its best value by using the Levenberg-Marquardt method (Press et al

10 , e
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Figure 2. Dynamics of first three layers on an attractive substrate for two partially wet
cases; po=0.09 () and py=0,05 (x). In both cases 7=0.10 and kT =0.04, with averages
taken over 500 independent runs.
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Figure 3. Dynamics of first layers for three completely wet cases; o= 0.20 (%), pe=0.15
(¢) and p,=0.11 (x). Other parameters are the same as in fgure 2.
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Figure 4. Curve fiiting of the characieristic spreading dynamics in the ¢

LN
wetting case (ug=0.15 and other parameters are the same as in figure 2). Best fit
curves are Ry(t)=—1.56+0357xr, h{r)=-551+0.720x(tlog )2 and h,(1}=
—8.43+0.609 % (¢ log 1}"/2

1986). In the latter case we find n = 1.002 with only a very slightly better sum of square
residuals. For h,(#} and hy(t) we used either h(f)=A+Bxt" or h(t)=A+Bx
(tlog 1)!/? as fitting functions in the Levenberg-Marquardt method. A very good fit
can be obtained by choosing n =1 in the former fitting function but a ten-fold improve-
ment in the sum of square residuals can be achieved by letting n find their best values,
n={.556 and n =0.567 for h, and h,, respectively. Using the latter fitting function we
obtain the same sum of square residuals as for the unforced fitting function. These
results are in excellent agreement with the analytical considerations by Abraham er af
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(1990a, b) and the discussion above. It is worth mentioning that the sums of square
residuals of these curve fittings can also be used as more accurate estimates for the
error bars in h;(f}. Thus we find that the error bars should be of the order of 0.8%
instead of the earlier estimate of 5%.

We have carried out the same simulations and analysis for the d =3 case but by
studying {hy());, (R (1)), and (hy(1)), instead. Here the subscript s stands for the
spatial average over the y direction. As in two dimensions we find these averaged
layers relaxing to equilibrium contact angle in the partially wet case. For complete
wetting the average precursor film is once again found to be linear in time, i.e. (ho(1)), ~ ¢
and the two layers on top of it also behave as (A1)}, ~ (t log r)"/*. A detailed analysis
of the d =3 case will be presented eisewhere.

These simulations of the dynamic Hsos model show (a) a precursor film spreading

as t, (b) some higher layers moving as (¢ log ¢)"/? and (c) above that a profile as ¢ ~ x .
Quch raculte have haen nradictad ]'“r the Lancavin theorv { Alraham of ol 1000Na k)
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(for (a}) and (b)), and by the continuum theory {(Joanny and de Gennes 1986) (for {¢))
and experiments ((a), (b) and (c)), although in the latter two cases the geometry is
spreading from a small drop rather than a wedge. It is very likely that this geometry
produces significantly different resuits because in the drop case there is more likelihood
of the spreading disc breaking up at its perimeter.

It is clear that our model contains significant over-simplifications. Firstly, the

a8 Labadl 4l DL RN LAMALall O L PAAPRALALGRIRAINS. DRlon [ 891

spreading interaction is assumed only to act on the first layer; this is easily remedxable.
Secondly, the substrate is taken to be smooth. A most seripus approximation is the
apparent lack of matter conservation. We assume that the wedge acts as a particle
source for the precursor film and that particles move from there to the film front
essentially instantaneously on the time scale of the simulation which is the ultimate
one. If the precursor film is wide enough it is likely that evaporation from its front
will become as fast as the spreading and the precursor will stop growing, much as
seen with squalane (Heslot et al 1989a). Also it is clear that much remains to be done
in this field.

In summary, we have shown that our dynamic Hsos model yields results in excellent
agreement with the analytic Langevin theory. It even seems that this model shows
similar Aluid profiles as obtained from hydrodynamics, which on the other hand is not
entirely appropriate for treating systems at molecular dimensions. In the future it
should be very interesting to study volatile systems and systems with longer range
substrate potentials.

The authors thank B Chopard, P Collet, ] De Coninck, E Domany, F Dunlop, H
Herrmann, J F Joanny and P J Upton for interesting discussions on related problems
JH and KK would like to acknowledge the financial support from the Academy of
Finland. KK would also like to thank SERC and Condensed Matter Theory Group
(Oxford University) for financial support and hospitality.
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